Multi-parameter perturbation methods for the eigensolution sensitivity analysis of nearly-resonant non-defective multi-degree-of-freedom systems
نویسنده
چکیده
The dynamic behavior of structural systems may be strongly characterized by the occurrence of multiple internal resonances for particular combinations of the mechanical parameters. The linear models governing these resonant or nearly-resonant systems tend to exhibit high sensitivity of the eigenvalues and eigenvectors to small parameter modifications. This pathological condition is recognized as a source of relevant phenomena, such as frequency veering and mode localization or hybridization. The paper presents the generalization of uniformly valid perturbation methods to perform eigensolution sensitivity analyses in multi-degree-of-freedom Hamiltonian systems with a generic number of close eigenvalues. The leading idea is to treat systematically nearly-resonant systems as multi-parameter perturbations of a perfectly-resonant, non-defective – though a priori unknown – reference system. Given a single nearly-resonant system, a multi-parameter perturbation method is presented to achieve a two-fold objective: first, identify a close resonant system suited to serve as a starting point for sensitivity analyses (inverse problem); second, to approximate asymptotically the eigensolution of all the nearly-resonant systems which may arise from its generic perturbation (direct problem). The conditions of existence and uniqueness of the inverse problem solution are discussed. The direct problem solution is analyzed with a focus on the eigensolution sensitivity to parameter perturbations with different physical meanings, such as a slight geometric disorder or weak elastic coupling in periodic structures. Finally, the procedure is verified on a prototypical structural system describing the section dynamics of a suspended bridge. & 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
A Software for Prediction of Periodic Response of Non-linear Multi Degree of Freedom Rotors Based on Harmonic Balances
It is the purpose of this paper to introduce a computer software that is developed for the analysis of general multi degree of freedom rotor bearing systems with non-linear support elements. A numerical-analytical method for the prediction of steady state periodic response of large order nonlinear rotor dynamic systems is addressed which is based on the harmonic balance technique. By utilizing ...
متن کاملAn Intensity Measure for Seismic Input Energy Demand of Multi-Degree-of-Freedom Systems
Nonlinear dynamic analyses are performed to compute the maximum relative input energy per unit mass for 21 multi-degree-of-freedom systems (MDOF) with preselected target fundamental periods of vibration ranging from 0.2 to 4.0 s and 6 target inter-story ductility demands of 1, 2, 3, 4, 6, 8 subjected to 40 the earthquake ground motions. The efficiency of the several intensity measures as an ind...
متن کاملModeling, simulation and analysis of a multi degree of freedom aircraft wing model
This paper presented methods to determine the aerodynamic forces that acton an aircraft wing during flight. These methods are initially proposed for asimplified two degree-of-freedoms airfoil model and then are extensivelyapplied for a multi-degree-of-freedom airfoil system. Different airspeedconditions are considered in establishing such methods. The accuracy of thepresented methods is verifie...
متن کاملPareto Optimization of a Two-degree of Freedom Passive Linear Suspension Using a New Multi-objective Genetic Algorithm (TECHNICAL NOTE)
The primary function of a suspension system of a vehicle is to isolate the road excitations experienced by the tires from being transmitted to the passengers. In this paper, we formulate an optimal vehicle suspension design problem with the quarter-car vehicle dynamic model. A new multi-objective genetic algorithm is used for Pareto optimization of a two-degree of freedom vehicle vibration mode...
متن کاملA weighted metric method to optimize multi-response robust problems
In a robust parameter design (RPD) problem, the experimenter is interested to determine the values of con-trol factors such that responses will be robust or insensitive to variability of the noise factors. Response sur-face methodology (RSM) is one of the effective methods that can be employed for this purpose. Since quality of products or processes is usually evaluated through several quality ...
متن کامل